8.8 Line radiation

Spectral line broadening

Natural broadening ^a	$I(\omega) = \frac{(2\pi\tau)^{-1}}{(2\tau)^{-2} + (\omega - \omega_0)^2}$	(8.112)	$I(\omega)$ normalised intensity ^b τ lifetime of excited state ω angular frequency (=2 πv)
Natural half-width	$\Delta\omega = \frac{1}{2\tau}$	(8.113)	$\Delta\omega$ half-width at half-power ω_0 centre frequency
Collision broadening	$I(\omega) = \frac{(\pi \tau_{c})^{-1}}{(\tau_{c})^{-2} + (\omega - \omega_{0})^{2}}$	(8.114)	τ _c mean time between collisions p pressure
Collision and pressure half-width ^c	$\Delta\omega = \frac{1}{\tau_{\rm c}} = p\pi d^2 \left(\frac{\pi mkT}{16}\right)^{-1/2}$	(8.115)	 d effective atomic diameter m gas particle mass k Boltzmann constant T temperature c speed of light
Doppler broadening	$I(\omega) = \left(\frac{mc^2}{2kT\omega_0^2\pi}\right)^{1/2} \exp\left[-\frac{mc^2}{2kT}\right]^{1/2}$	$\left[\frac{(\omega - \omega_0)^2}{\omega_0^2}\right] \tag{8.116}$	$I(\omega)$ $\Delta \omega$
Doppler half-width	$\Delta\omega = \omega_0 \left(\frac{2kT\ln 2}{mc^2}\right)^{1/2}$	(8.117)	ω_0

^aThe transition probability per unit time for the state is $=1/\tau$. In the classical limit of a damped oscillator, the e-folding time of the electric field is 2τ . Both the natural and collision profiles described here are Lorentzian.

Einstein coefficients^a

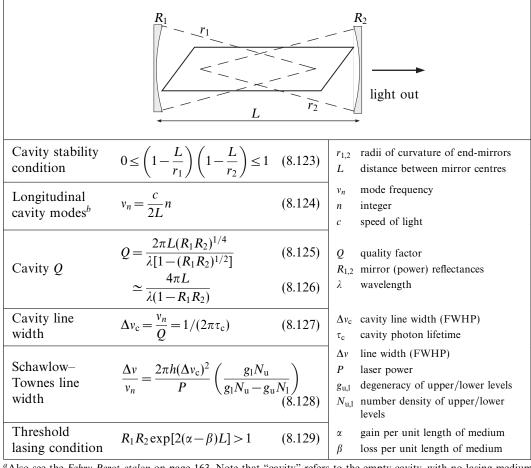
Absorption	$R_{12} = B_{12}I_{\nu}n_1$	(8.118)	R_{ij} transition rate, level $i \rightarrow j \text{ (m}^{-3} \text{ s}^{-1})$ B_{ij} Einstein B coefficients I_{ν} specific intensity of radiation field
Spontaneous emission	$R_{21} = A_{21}n_2$	(8.119)	A_{21} Einstein A coefficient n_i number density of atoms in quantum level i (m ⁻³)
Stimulated emission	$R_{21}' = B_{21}I_{\nu}n_2$	(8.120)	
Coefficient ratios	$\frac{A_{21}}{B_{12}} = \frac{2hv^3}{c^2} \frac{g_1}{g_2}$ $\frac{B_{21}}{B_{12}} = \frac{g_1}{g_2}$	(8.121) (8.122)	 h Planck constant v frequency c speed of light g_i degeneracy of ith level

a Note that the coefficients can also be defined in terms of spectral energy density, $u_v = 4\pi I_v/c$ rather than I_v . In this case $\frac{A_{21}}{B_{12}} = \frac{8\pi\hbar v^3}{c^3} \frac{g_1}{g_2}$. See also *Population densities* on page 116.

^bThe intensity spectra are normalised so that $\int I(\omega) d\omega = 1$, assuming $\Delta \omega / \omega_0 \ll 1$.

^cThe pressure-broadening relation combines Équations (5.78), (5.86) and (5.89) and assumes an otherwise perfect gas of finite-sized atoms. More accurate expressions are considerably more complicated.

Lasers^a



^aAlso see the *Fabry-Perot etalon* on page 163. Note that "cavity" refers to the empty cavity, with no lasing medium present.

 $[\]bar{b}$ The mode spacing equals the cavity free spectral range.